If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-20q=0
a = 3; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·3·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*3}=\frac{0}{6} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*3}=\frac{40}{6} =6+2/3 $
| 5x+3=3x–7 | | 7a-8=2a+42 | | -30x-52=22 | | 10+a=6 | | 13x=196;x | | 72+x=360 | | 36=12-18a | | -8x+236=0 | | n=242 | | -16m+15=32-4m | | 40x+116=259 | | (x-1)=100 | | (x-1=100 | | 4x-3-1=16 | | -35=5(p-8) | | 35.75=3(21.50+3d)+4d | | 24.2. x =4x-35 | | 0.8x+5=9 | | -3x+4=16 | | 31x.109x=32x.108x | | 2x.2=3x.5x | | 8=a+16 | | -(4x-10)=0 | | x÷(-10)=45 | | (x^2-3x-28)(9x-18)=0 | | 29+p=107 | | 5x-(3x-10)=30 | | 6x+36=8+6 | | (x+3)(x+7)=11 | | X/2+5=x+2 | | 2x=(1/2)10x-21 | | 4x^2+32=2x^2 |